A Note on Riemannian Metrics on the Moduli Space of Riemann Surfaces

نویسنده

  • YUNHUI WU
چکیده

In this note we show that the moduli space M(Sg,n) of surface Sg,n of genus g with n punctures, satisfying 3g + n ≥ 5, admits no complete Riemannian metric of nonpositive sectional curvature such that the Teichmüler space T(Sg,n) is a mapping class group Mod(Sg,n)-invariant visibility manifold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Volume of the Moduli Space of Flat Connections on a Nonorientable 2-manifold

We compute the Riemannian volume of the moduli space of flat connections on a nonorientable 2-manifold, for a natural class of metrics. We also show that Witten’s volume formula for these moduli spaces may be derived using Haar measure, and we give a new proof of Witten’s volume formula for the moduli space of flat connections on a Riemann surface using Haar measure. ———————–

متن کامل

On Special Generalized Douglas-Weyl Metrics

In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.

متن کامل

Moduli Spaces of Einstein Metrics on 4-manifolds

In this note, we announce some results showing unexpected similarities between the moduli spaces of constant curvature metrics on 2-manifolds (the Riemann moduli space) and moduli spaces of Einstein metrics on 4manifolds. Let J? denote the moduli space of Einstein metrics of volume 1 on a compact, orientable 4-manifold M. If J£\ denotes the space of smooth Riemannian metrics of volume 1 on M, e...

متن کامل

Scalar Curvatures of Hermitian Metrics on the Moduli Space of Riemann Surfaces

In this article we show that any finite cover of the moduli space of closed Riemann surfaces of g genus with g > 2 does not admit any complete finite-volume Hermitian metric of non-negative scalar curvature. Moreover, we also show that the total mass of the scalar curvature of any almost Hermitian metric, which is equivalent to the Teichmüller metric, on any finite cover of the moduli space is ...

متن کامل

1 9 O ct 1 99 8 Ω - Admissible Theory II : New metrics on determinant of cohomology And Their applications to moduli spaces of punctured Riemann surfaces

For singular metrics, Ray and Singer’s analytic torsion formalism cannot be applied. Hence we do not have the so-called Quillen metric on determinant of cohomology with respect to a singular metric. In this paper, we introduce a new metric on determinant of cohomology by adapting a totally different approach. More precisely, by strengthening results in the first paper of this series, we develop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015